Complete space-like hypersurfaces of a de Sitter space with constant mean curvature
نویسندگان
چکیده
منابع مشابه
Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کاملSpacelike hypersurfaces in de Sitter space with constant higher-order mean curvature
ing from (2.6), we obtain that ∫ M ( H1Hr −Hr+1 〈N ,a〉dV = 0. (3.1) We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2 r , where the equality implies that k1 = ··· = kn. Hence Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr−1−Hr ) . (3.2) It derives from Lemma 2.1 that 0≤H1/r r ≤H1/r−1 r−1 ≤ ··· ≤H1/2 2 ≤H1. (3.3) Thus we conclude that Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr1 −Hr ≥ 0, (3.4) and if r ≥ 2, the equalities h...
متن کاملspacelike hypersurfaces with constant $s$ or $k$ in de sitter space or anti-de sitter space
let $m^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de sitter space or an anti-de sitter space, $s$ and $k$ be the squared norm of the second fundamental form and gauss-kronecker curvature of $m^n$. if $s$ or $k$ is constant, nonzero and $m^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1990
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496161458